FoGE: Fock Space inspired encoding for graph prompting

ICLR 2025 Conference Submission1403 Authors

17 Sept 2024 (modified: 26 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: llm, prefix tuning, graph, graph encoding, geometric algebra, Fock space
Abstract: Recent results show that modern Large Language Models (LLM) are indeed capable of understanding and answering questions about structured data such as graphs. Existing proposals often use some description of the graph to create an ``augmented'' prompt fed to the LLM. For a chosen class of graphs, if a well-tailored graph encoder is deployed to play together with a pre-trained LLM, the model can answer graph-related questions well. Existing solutions to graph-based prompts range from graph serialization to graph transformers. In this work, we show that the use of a parameter-free graph encoder based on Fock space representations, a concept borrowed from mathematical physics, is remarkably versatile in this problem setting. The simple construction, inherited directly from the theory with a few small adjustments, can provide rich and informative graph encodings, for a wide range of different graphs. We investigate the use of this idea for prefix-tuned prompts leveraging the capabilities of a pre-trained, frozen LLM. The modifications lead to a model that can answer graph-related questions -- from simple graphs to proteins to hypergraphs -- effectively and with minimal, if any, adjustments to the architecture. Our work significantly simplifies existing solutions and generalizes well to multiple different graph-based structures effortlessly.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1403
Loading