Winning Both the Accuracy of Floating Point Activation and the Simplicity of Integer ArithmeticDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Abstract: Even though floating point (FP) numbers have been adopted as a de facto standard data format for deep learning computing, the complexity of FP arithmetic impedes a broader deployment of Deep Neural Networks (DNNs). Recent works such as quantization have attempted to replace the FP matrix multiplication (MatMul) of DNNs with simple integer MatMul by transforming the datatypes of both weights and activations into integers. Unfortunately, unlike weight values that are static, it is challenging to represent dynamic activations with integers. In this paper, to simultaneously achieve the accuracy of FP activation and the simplicity of integer arithmetic, we present a method for replacing FP arithmetic with integer one without changing FP activations in the storage format while weights are quantized. The proposed method pre-aligns the significands of FP activations just ahead of the MatMul on-the-fly so that the aligned significands (integers) can be used for the computation. Inspired by an observation that conventional FP arithmetic does not produce precise results due to rounding, we demonstrate that our proposed integer arithmetic-based scheme can produce the same level of errors as that of the FP arithmetic in case DNNs use FP activations and quantized weights. Experimental results show that the hardware based on the proposed scheme shows significant improvement over FP arithmetic-based designs in terms of energy efficiency and throughput-per-area while maintaining a similar level of accuracy.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Infrastructure (eg, datasets, competitions, implementations, libraries)
Supplementary Material: zip
12 Replies