Keywords: neural radiance fields, differentiable rendering, importance sampling, reparameterization trick
TL;DR: An importance sampling-based rendering algorithm for neural radiance fields based alleviates the costs of redundant radiance computation.
Abstract: We propose an alternative rendering algorithm for neural radiance fields based on importance sampling. In view synthesis, a neural radiance field approximates underlying density and radiance fields based on a sparse set of views of a scene. To generate a pixel of a novel view, it marches a ray through the pixel and computes a weighted sum of radiance emitted from a dense set of ray points. This rendering algorithm is fully differentiable and facilitates gradient-based optimization of the fields. However, in practice, only a tiny opaque portion of the ray contributes most of the radiance to the sum. Therefore, we can avoid computing radiance in the rest part. In this work, we use importance sampling to pick non-transparent points on the ray. Specifically, we generate samples according to the probability distribution induced by the density field. Our main contribution is the reparameterization of the sampling algorithm. It allows end-to-end learning with gradient descent as in the original rendering algorithm. With our approach, we can optimize a neural radiance field with just a few radiance field evaluations per ray. As a result, we alleviate the costs associated with the color component of the neural radiance field.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/differentiable-rendering-with-reparameterized/code)
11 Replies
Loading