A Reinforcement Learning-based Bidding Strategy for Data Consumers in Auction-based Federated Learning
Keywords: federated learning, auction-based federated learning, Gaussian Mixture Model
Abstract: Auction-based Federated Learning (AFL) fosters collaboration among self-interested data consumers (DCs) and data owners (DOs). A major challenge in AFL pertains to how DCs select and bid for DOs. Existing methods are generally static, making them ill-suited for dynamic AFL markets. To address this issue, we propose the R}einforcement Learning-based Bidding Strategy for DCs in Auction-based Federated Learning (RLB-AFL). We incorporate historical states into a Deep Q-Network to capture sequential information critical for bidding decisions. To mitigate state space sparsity, where specific states rarely reoccur for each DC during auctions, we incorporate the Gaussian Mixture Model into RLB-AFL. This facilitates soft clustering on sequential states, reducing the state space dimensionality and easing exploration and action-value function approximation. In addition, we enhance the $\epsilon$-greedy policy to help the RLB-AFL agent balance exploitation and exploration, enabling it to be more adaptable in the AFL decision-making process. Extensive experiments under 6 widely used benchmark datasets demonstrate that RLB-AFL achieves superior performance compared to 8 state-of-the-art approaches. It outperforms the best baseline by 10.56% and 3.15% in terms of average total utility
Primary Area: Machine learning for sciences (e.g. climate, health, life sciences, physics, social sciences)
Submission Number: 12122
Loading