Keywords: image compositing, diffusion model, spatial relations
TL;DR: A pairwise image compositing model that maintains spatial coherence and realistic object interactions.
Abstract: Despite strong single-turn performance, diffusion-based image compositing often struggles to preserve coherent spatial relations in pairwise or sequential edits, where subsequent insertions may overwrite previously generated content and disrupt physical consistency. We introduce PICS, a self-supervised composition-by-decomposition paradigm that composes objects in parallel while explicitly modeling the compositional interactions among (fully-/partially-)visible objects and background. At its core, an Interaction Transformer employs mask-guided Mixture-of-Experts to route background, exclusive, and overlap regions to dedicated experts, with an adaptive $\alpha$-blending strategy that infers a compatibility-aware fusion of overlapping objects while preserving boundary fidelity. To further enhance robustness to geometric variations, we incorporate geometry-aware augmentations covering both out-of-plane and in-plane pose changes of objects. Our method delivers superior pairwise compositing quality and substantially improved stability, with extensive evaluations across virtual try-on, indoor, and street scene settings showing consistent gains over state-of-the-art baselines.
Primary Area: generative models
Submission Number: 8047
Loading