On the Expressive Power of Mixture-of-Experts for Structured Complex Tasks

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: mixture-of-experts, expressive power, approximation rate, compositional sparsity, low-dimensional manifold
Abstract: Mixture-of-experts networks (MoEs) have demonstrated remarkable efficiency in modern deep learning. Despite their empirical success, the theoretical foundations underlying their ability to model complex tasks remain poorly understood. In this work, we conduct a systematic study of the expressive power of MoEs in modeling complex tasks with two common structural priors: low-dimensionality and sparsity. For shallow MoEs, we prove that they can efficiently approximate functions supported on low-dimensional manifolds, overcoming the curse of dimensionality. For deep MoEs, we show that $\mathcal{O}(L)$-layer MoEs with $E$ experts per layer can approximate piecewise functions comprising $E^L$ pieces with compositional sparsity, i.e., they can exhibit an exponential number of structured tasks. Our analysis reveals the roles of critical architectural components and hyperparameters in MoEs, including the gating mechanism, expert networks, the number of experts, and the number of layers, and offers natural suggestions for MoE variants.
Supplementary Material: zip
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 21482
Loading