Shared-AE: Automatic Identification of Shared Subspaces in High-dimensional Neural and Behavioral Activity
Keywords: Computational neuroscience, Multimodal, Social behavior
Abstract: Understanding the relationship between behavior and neural activity is crucial for understanding brain function. An effective method is to learn embeddings for interconnected modalities. For simple behavioral tasks, neural features can be learned based on labels. However, complex behaviors, such as social interactions, require the joint extraction of behavioral and neural characteristics. In this paper, we present an autoencoder (AE) framework, called Shared-AE, which includes a novel regularization term that automatically identifies features shared between neural activity and behavior, while simultaneously capturing the unique private features specific to each modality. We apply Shared-AE to large-scale neural activity recorded across the entire dorsal cortex of the mouse, during two very different behaviors: (i) head-fixed mice performing a self-initiated decision-making task, and (ii) freely-moving social behavior amongst two mice. Our model successfully captures both `shared features', shared across neural and behavioral activity, and `private features', unique to each modality, significantly enhancing our understanding of the alignment between neural activity and complex behaviors. The original code for the entire Shared-AE framework on Pytorch has been made publicly available at: \url{https://github.com/saxenalab-neuro/Shared-AE}.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12417
Loading