Semantic Temporal Abstraction via Vision-Language Model Guidance for Efficient Reinforcement Learning
Keywords: Reinforcement Learning; Vision-Language Models; Temporal Abstraction
Abstract: Extracting temporally extended skills can significantly improve the efficiency of reinforcement learning (RL) by breaking down complex decision-making problems with sparse rewards into simpler subtasks and enabling more effective credit assignment. However, existing abstraction methods either discover skills in an unsupervised manner, which often lacks semantic information and leads to erroneous or scattered skill extraction results, or require substantial human intervention. In this work, we propose to leverage the extensive knowledge in pretrained Vision-Language Models (VLMs) to progressively guide the latent space after vector quantization to be more semantically meaningful through relabeling each skill. This approach, termed **V**ision-l**an**guage model guided **T**emporal **A**bstraction (**VanTA**), facilitates the discovery of more interpretable and task-relevant temporal segmentations from offline data without the need for extensive manual intervention or heuristics. By leveraging the rich information in VLMs, our method can significantly outperform existing offline RL approaches that depend only on limited training data. From a theory perspective, we demonstrate that stronger internal sequential correlations within each sub-task, induced by VanTA, effectively reduces suboptimality in policy learning. We validate the effectiveness of our approach through extensive experiments on diverse environments, including Franka Kitchen, Minigrid, and Crafter. These experiments show that our method surpasses existing approaches in long-horizon offline reinforcement learning scenarios with both proprioceptive and visual observations.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11289
Loading