TREAT: A Code LLMs Trustworthiness / Reliability Evaluation and Testing Framework

ICLR 2026 Conference Submission16790 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Code LLM, Benchmark, Software Engineering
Abstract: Large foundation models are fundamentally transforming the software engineering landscape, demonstrating exceptional capabilities across diverse tasks such as code generation, debugging, and testing. Despite this rapid progress, a significant gap remains in how to comprehensively evaluate these models' trustworthiness in real-world software engineering scenarios. Existing benchmarks suffer from limited task scope and fail to incorporate critical evaluation aspects such as the robustness and reliability of models. To bridge this gap, we present an evaluation framework called TREAT (Code LLMs Trustworthiness / Reliability Evaluation And Testing) that provides a holistic assessment of model performance in code intelligence tasks. Our evaluation framework addresses key limitations in existing approaches with four main improvements: (1) Multi-Task Holistic Evaluation that spans diverse software engineering activities rather than limited coding tasks; (2) Multi-Language and Multi-Modality Assessment that extends beyond traditional single-language, text-only benchmarks to include multi-modality coding tasks; (3) Robustness Assessment that evaluates model reliability under semantically-preserving code transformations; and (4) Rigorous Evaluation Methodology that enhances the trustworthiness of evaluation results through diverse evaluation prompts and adaptive solution extraction. Based on this evaluation framework, we assess 26 state-of-the-art models and uncover both their strengths and limitations, yielding several key insights:(1) Current models show substantial performance variation across programming tasks; (2) Multi-modal language models demonstrate specific performance limitations in UI code generation and edit; (3) Existing models exhibit severe robustness issues on coding tasks; (4) Our multi-prompt evaluation method can mitigate potential evaluation bias from single prompts and obtain more reliable results.
Primary Area: datasets and benchmarks
Submission Number: 16790
Loading