Keywords: Variance Reduction Method, SGD, Generalized Equation, Variational Inequality, Minimax Problem
TL;DR: This paper proposes novel variance-reduced methods for generalized equations with state-of-the-art oracle complexity
Abstract: We develop two novel stochastic variance-reduction methods to approximate a solution of generalized equations applicable to both equations and inclusions. Our algorithms leverage a new combination of ideas from the forward-reflected-backward splitting method and a class of unbiased variance-reduced estimators. We construct two new stochastic estimators within this class, inspired by the well-known SVRG and SAGA estimators. These estimators significantly differ from existing approaches used in minimax and variational inequality problems. By appropriately selecting parameters, both algorithms achieve the state-of-the-art oracle complexity of $\mathcal{O}(n + n^{2/3} \epsilon^{-2})$ for obtaining an $\epsilon$-solution in terms of the operator residual norm, where $n$ represents the number of summands and $\epsilon$ signifies the desired accuracy. This complexity aligns with the best-known results in SVRG and SAGA methods for stochastic nonconvex optimization. We test our algorithms on two numerical examples and compare them with existing methods. The results demonstrate promising improvements offered by the new methods compared to their competitors.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10582
Loading