GraphFM: A generalist graph transformer that learns transferable representations across diverse domains
Keywords: graph transformer, multi-graph training, graph foundation model, node classification
TL;DR: This work introduces GraphFM, an approach designed for learning across diverse graph datasets, allowing generalization and strong performance across multiple domains with a single model.
Abstract: Graph neural networks (GNNs) are often trained on individual datasets, requiring specialized models and significant hyperparameter tuning due to the unique structures and features of each dataset. This approach limits the scalability and generalizability of GNNs, as models must be tailored for each specific graph type. To address these challenges, we introduce GraphFM, a scalable multi-graph pretraining approach designed for learning across diverse graph datasets. GraphFM uses a Perceiver-based encoder with learned latent tokens to compress domain-specific features into a shared latent space, enabling generalization across graph domains. We propose new techniques for scaling up graph training on datasets of different sizes, allowing us to train GraphFM on 152 distinct graph datasets, spanning 7.4 million nodes and 189 million edges. This allows us to study the effect of scale on pretraining across domains such as molecules, citation networks, and product graphs, and show that training on diverse datasets improves performance over single-source pretraining. Our results demonstrate that pretraining on diverse real and synthetic graphs enhances adaptability and stability, leading to competitive performance with state-of-the-art models across various node classification tasks. This approach reduces the burden of dataset-specific training and provides a single generalist model capable of performing across multiple diverse graph structures and tasks.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11732
Loading