Keywords: reinforcement learning, temporal logic, differentiable simulation
TL;DR: We address challenges of scalable learning with correct objectives, using LTL as the formal specification language and differentiable simulation to accelerate learning.
Abstract: Ensuring that reinforcement learning (RL) controllers satisfy safety and reliability constraints in real-world settings remains challenging: state-avoidance and constrained Markov decision processes often fail to capture trajectory-level requirements or induce overly conservative behavior. Formal specification languages such as linear temporal logic (LTL) offer correct-by-construction objectives, yet their rewards are typically sparse, and heuristic shaping can undermine correctness. We introduce, to our knowledge, the first end-to-end framework that integrates LTL with differentiable simulators, enabling efficient gradient-based learning directly from formal specifications. Our method relaxes discrete automaton transitions via soft labeling of states, yielding differentiable rewards and state representations that mitigate the sparsity issue intrinsic to LTL while preserving objective soundness. We provide theoretical guarantees connecting Büchi acceptance to both discrete and differentiable LTL returns and derive a tunable bound on their discrepancy in deterministic and stochastic settings. Empirically, across complex, nonlinear, contact-rich continuous-control tasks, our approach substantially accelerates training and achieves up to twice the returns of discrete baselines. We further demonstrate compatibility with reward machines, thereby covering co-safe LTL and LTLf without modification. By rendering automaton-based rewards differentiable, our work bridges formal methods and deep RL, enabling safe, specification-driven learning in continuous domains.
Supplementary Material: zip
Primary Area: reinforcement learning
Submission Number: 14834
Loading