Understanding and Mitigating Miscalibration in Prompt Tuning for Vision-Language Models

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Vision-Language Models, Confidence calibration, Outlier Regularization, Prompt Tuning
TL;DR: We propose Dynamic Outlier Regularization to improve CLIP’s calibration under various evaluations without compromising vanilla fine-tuning.
Abstract: Confidence calibration is critical for the safe deployment of machine learning models in the real world. However, such issue in vision-language models like CLIP, particularly after fine-tuning, has not been fully addressed. In this work, we demonstrate that existing prompt tuning methods usually lead to a trade-off of calibration between base and new classes: the cross-entropy loss in CoOp causes overconfidence in new classes by increasing textual label divergence, whereas the regularization of KgCoOp maintains the confidence level but results in underconfidence in base classes due to the improved accuracy. Inspired by the observations, we introduce Dynamic Outlier Regularization (DOR) to ensure the confidence calibration on both base and new classes after fine-tuning. In particular, we propose to minimize the feature deviation of novel textual labels (instead of base classes) sampled from a large vocabulary. In effect, DOR prevents the increase in textual divergence for new labels while easing restrictions on base classes. Extensive experiments demonstrate that DOR can enhance the calibration performance of current fine-tuning methods on base and new classes.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8352
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview