Keywords: LLM, Continuous Normalizing Flow, Diffusion Model, RLAIF, Explainable AI
Abstract: As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain agent policies in natural language is vital for reliable coexistence. We introduce a general-purpose framework that trains explanation-generating LLMs via reinforcement learning from AI feedback, with distributional rewards generated by generative continuous normalizing flows (CNFs). CNFs capture the pluralistic and probabilistic nature of human judgments about explanations. Moreover, under mild assumptions, CNFs provably bound deviations from true human reward distributions when trained on noisy proxy rewards from LLMs. We design a specialized CNF architecture that selectively attends to linguistic cues in decision context and explanations when generating rewards. Human and LLM evaluators find that our method delivers explanations that enable more accurate predictions of true agent decisions, exhibit greater logical soundness and actionability, and impose lower cognitive load than explanations trained with proxy LLM rewards or state-of-the-art RLHF and RLAIF baselines.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Submission Number: 12727
Loading