Keywords: dataset distillation, supervised learning, offline RL, learning theory
TL;DR: Algorithms and performance guarantees for supervised and offline RL dataset distillation along with experimental validation.
Abstract: Given a training dataset, the goal of dataset distillation is to derive a synthetic dataset such that models trained on the latter perform as well as those trained on the training dataset. In this work, we develop and analyze an efficient dataset distillation algorithm for supervised learning, specifically regression in $\mathbb{R}^d$, based on matching the losses on the training and synthetic datasets with respect to a fixed set of randomly sampled regressors without any model training. Our first key contribution is a novel performance guarantee proving that our algorithm needs only $\tilde{O}(d^2)$ sampled regressors to derive a synthetic dataset on which the MSE loss of any bounded linear model is approximately the same as its MSE loss on the given training data. In particular, the model optimized on the synthetic data has close to minimum loss on the training data, thus performing nearly as well as the model optimized on the latter. Complementing this, we also prove a matching lower bound of $\Omega(d^2)$ for the number of sampled regressors showing the tightness of our analysis.
Our second contribution is to extend our algorithm to offline RL dataset distillation by matching the Bellman loss, unlike previous works which used a behavioral cloning objective. This is the first such method which leverages both, the rewards and the next state information, available in offline RL datasets, without any policy model optimization. We show similar guarantees: our algorithm generates a synthetic dataset whose Bellman loss with respect to any linear action-value predictor is close to the latter’s Bellman loss on the offline RL training dataset. Therefore, a policy associated with an action-value predictor optimized on the synthetic dataset performs nearly as well as that derived from the one optimized on the training data. We conduct extensive experiments to validate our theoretical guarantees and observe performance gains on real-world RL environments with offline training datasets and supervised regression datasets.
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 20068
Loading