Keywords: Event-Based Vision, Deep Learning, Computer Vision, Video Frame Interpolation
Abstract: Event cameras, with their capacity to provide high temporal resolution information between frames, are increasingly utilized for video frame interpolation (VFI) in challenging scenarios characterized by high-speed motion and significant occlusion. However, prevalent issues of blur and distortion within the keyframes and ground truth data used for training and inference in these demanding conditions are frequently overlooked. This oversight impedes the perceptual realism and multi-scene generalization capabilities of existing event-based VFI (E-VFI) methods when generating interpolated frames. Motivated by the observation that semantic-perceptual discrepancies between degraded and pristine images are considerably smaller than their image-level differences, we introduce EPA. This novel E-VFI framework diverges from approaches reliant on direct image-level supervision by constructing multilevel, degradation-insensitive semantic perceptual supervisory signals to enhance the perceptual realism and multi-scene generalization of the model's predictions. Specifically, EPA operates in two phases: it first employs a DINO-based perceptual extractor, a customized style adapter, and a reconstruction generator to derive multi-layered, degradation-insensitive semantic-perceptual features ($\mathcal{S}$). Second, a novel Bidirectional Event-Guided Alignment (BEGA) module utilizes deformable convolutions to align perceptual features from keyframes to ground truth with inter-frame temporal guidance extracted from event signals. By decoupling the learning process from direct image-level supervision, EPA enhances model robustness against degraded keyframes and unreliable ground truth information. Extensive experiments demonstrate that this approach yields interpolated frames more consistent with human perceptual preferences. *The code will be released upon acceptance.*
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 4733
Loading