Keywords: Generalization, Random Matrix Theory, Spiked Covariance, Two Layer Network, Layer Wise Training
Abstract: Random matrix theory has proven to be a valuable tool in analyzing the generalization of linear models. However, the generalization properties of even two-layer neural networks trained by gradient descent remain poorly understood. To understand the generalization performance of such networks, it is crucial to characterize the spectrum of the feature matrix at the hidden layer.
Recent work has made progress in this direction by describing the spectrum after a single gradient step, revealing a spiked covariance structure. Yet, the generalization error for linear models with spiked covariances has not been previously determined.
This paper addresses this gap by examining two simple models exhibiting spiked covariances. We derive their generalization error in the asymptotic proportional regime. Our analysis demonstrates that the eigenvector and eigenvalue corresponding to the spike significantly influence the generalization error.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13673
Loading