High Probability Bounds for Cross-Learning Contextual Bandits with Unknown Context Distributions

ICLR 2025 Conference Submission11051 Authors

27 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: contextual bandits, cross-learning, high-probability bounds
TL;DR: We give a nearly optimal high probability bound for the cross-learning contextual bandits with unknown context distributions.
Abstract: Motivated by applications in online bidding and sleeping bandits, we examine the problem of contextual bandits with cross learning, where the learner observes the loss associated with the action across all possible contexts, not just the current round’s context. Our focus is on a setting where losses are chosen adversarially, and contexts are sampled i.i.d. from a specific distribution. This problem was first studied by Balseiro et al. (2019), who proposed an algorithm that achieves near-optimal regret under the assumption that the context distribution is known in advance. However, this assumption is often unrealistic. To address this issue, Schneider & Zimmert (2023) recently proposed a new algorithm that achieves nearly optimal expected regret. It is well-known that expected regret can be significantly weaker than high-probability bounds. In this paper, we present a novel, in-depth analysis of their algorithm and demonstrate that it actually achieves near-optimal regret with $\textit{high probability}$. There are steps in the original analysis by Schneider & Zimmert (2023) that lead only to an expected bound by nature. In our analysis, we introduce several new insights. Specifically, we make extensive use of the weak dependency structure between different epochs, which was overlooked in previous analyses. Additionally, standard martingale inequalities are not directly applicable, so we refine martingale inequalities to complete our analysis.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11051
Loading