KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing

26 Sept 2024 (modified: 16 Dec 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, KV Cache, KVSharer
Abstract: The development of large language models (LLMs) has significantly expanded model sizes, resulting in substantial GPU memory requirements during inference. The key and value storage of the attention map in the KV (key-value) cache accounts for more than 80\% of this memory consumption. Nowadays, most existing KV cache compression methods focus on intra-layer compression within a single Transformer layer but few works consider layer-wise compression. In this paper, we propose a plug-and-play method called \textit{KVSharer}, which shares the KV cache between layers to achieve layer-wise compression. Rather than intuitively sharing based on higher similarity, we discover a counterintuitive phenomenon: sharing dissimilar KV caches better preserves the model performance. Experiments show that \textit{KVSharer} can reduce KV cache computation by 30\%, thereby lowering memory consumption without significantly impacting model performance and it can also achieve at least 1.3 times generation acceleration. Additionally, we verify that \textit{KVSharer} is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7482
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview