Keywords: Preference Optimization, Policy Optimization, Negative Feedback, Positive feedback, Reinforcement Learning, Probabilistic Inference
TL;DR: A new policy optimization algorithm that learns from different type and number of feedback (positive, negative, or both) to optimize policies.
Abstract: Existing preference optimization methods often assume scenarios where paired preference feedback (preferred/positive vs. dis-preferred/negative examples) is available. This requirement limits their applicability in scenarios where only unpaired feedback—for example, either positive or negative— is available. To address this, we introduce a novel approach that decouples learning from positive and negative feedback. This decoupling enables control over the influence of each feedback type and, importantly, allows learning even when only one feedback type is present. A key contribution is demonstrating stable learning from negative feedback alone, a capability not well-addressed by current methods. Our approach builds upon the probabilistic framework introduced in (Dayan and Hinton, 1997), which uses expectation-maximization (EM) to directly optimize the probability of positive outcomes (as opposed to classic expected reward maximization). We address a key limitation in current EM-based methods: they solely maximize the likelihood of positive examples, while neglecting negative ones. We show how to extend EM algorithms to explicitly incorporate negative examples, leading to a theoretically grounded algorithm that offers an intuitive and versatile way to learn from both positive and negative feedback. We evaluate our approach for training language models based on human feedback as well as training policies for sequential decision-making problems, where learned value functions are available.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10103
Loading