The Effect of Data Dimensionality on Neural Network PrunabilityDownload PDF

Published: 06 Dec 2022, Last Modified: 05 May 2023ICBINB posterReaders: Everyone
Keywords: Sparsity, Pruning, Lottery Ticket Hypothesis, Natural Manifold Hypothesis
Abstract: Practitioners prune neural networks for efficiency gains and generalization im- provements, but few scrutinize the factors determining the prunability of a neural network – the maximum fraction of weights that pruning can remove without compromising the model’s test accuracy. In this work, we study the properties of input data that may contribute to the prunability of a neural network. For high dimensional input data such as images, text, and audio, the manifold hypothesis suggests that these high dimensional inputs approximately lie on or near a significantly lower dimensional manifold. Prior work demonstrates that the underlying low dimensional structure of the input data may affect the sample efficiency of learning. In this paper, we investigate whether the low dimensional structure of the input data affects the prunability of a neural network.
0 Replies

Loading