Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning; foundation model; humanoid
TL;DR: We present a novel unsupervised reinforcement learning algorithm that leverages unlabeled behavior data to create a foundation model for controlling a humanoid agent in a zero-shot fashion.
Abstract: Unsupervised reinforcement learning (RL) aims at pre-training models that can solve a wide range of downstream tasks in complex environments. Despite recent advancements, existing approaches suffer from several limitations: they may require running an RL process on each task to achieve a satisfactory performance, they may need access to datasets with good coverage or well-curated task-specific samples, or they may pre-train policies with unsupervised losses that are poorly correlated with the downstream tasks of interest. In this paper, we introduce FB-CPR, which regularizes unsupervised zero-shot RL based on the forward-backward (FB) method towards imitating trajectories from unlabeled behaviors. The resulting models learn useful policies imitating the behaviors in the dataset, while retaining zero-shot generalization capabilities. We demonstrate the effectiveness of FB-CPR in a challenging humanoid control problem. Training FB-CPR online with observation-only motion capture datasets, we obtain the first humanoid behavioral foundation model that can be prompted to solve a variety of whole-body tasks, including motion tracking, goal reaching, and reward optimization. The resulting model is capable of expressing human-like behaviors and it achieves competitive performance with task-specific methods while outperforming state-of-the-art unsupervised RL and model-based baselines.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2200
Loading