Keywords: RNA Folding Kinetics, Prior-Data Fitted Networks, Deep Learning, Synthetic Data, Transformer, Bayesian Inference
TL;DR: We use a synthetic prior of RNA folding time distributions to train a prior-data fitted network to accurately approximate RNA folding time distributions in a single forward pass, given only a small set of initial folding time examples.
Abstract: RNA is a dynamic biomolecule crucial for cellular regulation, with its function largely determined by its folding into complex structures, while misfolding can lead to multifaceted biological sequelae. During the folding process, RNA traverses through a series of intermediate structural states, with each transition occurring at variable rates that collectively influence the time required to reach the functional form. Understanding these folding kinetics is vital for predicting RNA behavior and optimizing applications in synthetic biology and drug discovery. While in silico kinetic RNA folding simulators are often computationally intensive and time-consuming, accurate approximations of the folding times can already be very informative to assess the efficiency of the folding process. In this work, we present KinPFN, a novel approach that leverages prior-data fitted networks to directly model the posterior predictive distribution of RNA folding times. By training on synthetic data representing arbitrary prior folding times, KinPFN efficiently approximates the cumulative distribution function of RNA folding times in a single forward pass, given only a few initial folding time examples. Our method offers a modular extension to existing RNA kinetics algorithms, promising significant computational speed-ups orders of magnitude faster, while achieving comparable results. We showcase the effectiveness of KinPFN through extensive evaluations and real-world case studies, demonstrating its potential for RNA folding kinetics analysis, its practical relevance, and generalization to other biological data.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10212
Loading