Disentangling Regional Primitives for Image Generation

22 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Explainable AI, Generative Adversarial Networks, Interactions
TL;DR: This paper presents a method to explain the internal representation structure of a neural network for image generation.
Abstract: This paper presents a method to explain the internal representation structure of a neural network for image generation. Specifically, our method disentangles primitive feature components from the intermediate-layer feature of the neural network, which ensures that each feature component is exclusively used to generate a specific set of image regions. In this way, the generation of the entire image can be considered as the superposition of different pre-encoded primitive regional patterns, each being generated by a feature component. We find that the feature component can be represented as an OR relationship between the demands for generating different image regions, which is encoded by the neural network. Therefore, we extend the Harsanyi interaction to represent such an OR interaction to disentangle the feature component. Experiments show a clear correspondence between each feature component and the generation of specific image regions.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2484
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview