Visual-Locomotion: Learning to Walk on Complex Terrains with VisionDownload PDF

Published: 13 Sept 2021, Last Modified: 05 May 2023CoRL2021 PosterReaders: Everyone
Keywords: Legged Robot, Reinforcement Learning, Visual Locomotion
Abstract: Vision is one of the most important perception modalities for legged robots to safely and efficiently navigate uneven terrains, such as stairs and stepping stones. However, training robots to effectively understand high-dimensional visual input for locomotion is a challenging problem. In this work, we propose a framework to train a vision-based locomotion controller which enables a quadrupedal robot to traverse uneven environments. The key idea is to introduce a hierarchical structure with a high-level vision policy and a low-level motion controller. The high-level vision policy takes as inputs the perceived vision signals as well as robot states and outputs the desired footholds and base movement of the robot. These are then realized by the low level motion controller composed of a position controller for swing legs and a MPC-based torque controller for stance legs. We train the vision policy using Deep Reinforcement Learning and demonstrate our approach on a variety of uneven environments such as randomly placed stepping stones, quincuncial piles, stairs, and moving platforms. We also validate our method on a real robot to walk over a series of gaps and climbing up a platform.
Supplementary Material: zip
Poster: pdf
14 Replies