Direct Distributional Optimization for Provable Alignment of Diffusion Models

ICLR 2025 Conference Submission4323 Authors

25 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion models, Optimization
Abstract: We introduce a novel alignment method for diffusion models from distribution optimization perspectives while providing rigorous convergence guarantees. We first formulate the problem as a generic regularized loss minimization over probability distributions and directly optimize the distribution using the Dual Averaging method. Next, we enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique. The proposed framework is supported by rigorous convergence guarantees and an end-to-end bound on the sampling error, which imply that when the original distribution's score is known accurately, the complexity of sampling from shifted distributions is independent of isoperimetric conditions. This framework is broadly applicable to general distribution optimization problems, including alignment tasks in Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), and Kahneman-Tversky Optimization (KTO). We empirically validate its performance on synthetic and image datasets using the DPO objective.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4323
Loading