Conformal Prediction for Class-wise Coverage via Augmented Label Rank Calibration

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: Uncertainty Quantification, Conformal Prediction, Imbalanced Data, Class-conditional Coverage, Deep Models
TL;DR: Provable conformal prediction method to produce small prediction sets for class-conditional coverage for imbalanced classification problems using the augmented rank calibration.
Abstract: Conformal prediction (CP) is an emerging uncertainty quantification framework that allows us to construct a prediction set to cover the true label with a pre-specified marginal or conditional probability. Although the valid coverage guarantee has been extensively studied for classification problems, CP often produces large prediction sets which may not be practically useful. This issue is exacerbated for the setting of class-conditional coverage on imbalanced classification tasks with many and/or imbalanced classes. This paper proposes the Rank Calibrated Class-conditional CP (RC3P) algorithm to reduce the prediction set sizes to achieve class-conditional coverage, where the valid coverage holds for each class. In contrast to the standard class-conditional CP (CCP) method that uniformly thresholds the class-wise conformity score for each class, the augmented label rank calibration step allows RC3P to selectively iterate this class-wise thresholding subroutine only for a subset of classes whose class-wise top-$k$ error is small. We prove that agnostic to the classifier and data distribution, RC3P achieves class-wise coverage. We also show that RC3P reduces the size of prediction sets compared to the CCP method. Comprehensive experiments on multiple real-world datasets demonstrate that RC3P achieves class-wise coverage and $26.25\\%$ $\downarrow$ reduction in prediction set sizes on average.
Supplementary Material: zip
Primary Area: Safety in machine learning
Submission Number: 12860
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview