Keywords: segment anything, peft, biomedical image segmentation
TL;DR: This paper highlights the application of PEFT methods to efficiently fine-tune vision foundation models like SAM, MicroSAM and MedicoSAM for better biomedical image segmentation, reducing computational costs and improving performance on diverse data.
Abstract: Segmentation is an important analysis task for biomedical images, enabling the study of individual organelles, cells or organs. Deep learning has massively improved segmentation methods, but challenges remain in generalization to new conditions, requiring costly data annotation. Vision foundation models, such as Segment Anything Model (SAM), address this issue through improved generalization. However, these models still require finetuning on annotated data, although with less annotations, to achieve optimal results for new conditions. As a downside, they require more computational resources. This makes parameter-efficient finetuning (PEFT) relevant. We contribute the first comprehensive study of PEFT for SAM applied to biomedical images. We find that the placement of PEFT layers is more important for efficiency than the type of layer for vision transformers and we provide a recipe for resource-efficient finetuning.
Primary Subject Area: Foundation Models
Secondary Subject Area: Segmentation
Paper Type: Methodological Development
Registration Requirement: Yes
Reproducibility: https://github.com/computational-cell-analytics/peft-sam
Visa & Travel: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 184
Loading