Keywords: distillation, reasoning, reinforcement learning
TL;DR: This paper shows that incorrect reasoning traces from a distillation pipeline are valuable, as they can "reinforce" a smaller model to achieve better data efficiency.
Abstract: Recent advances in model distillation show that data from advanced reasoning models can effectively train smaller student models. However, standard practices discard incorrect reasoning examples—valuable, yet underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? We employ a two-stage training recipe: first, Supervised Fine-Tuning (SFT) on positive traces, followed by a refinement stage using both positive and negative traces. We find that a simple, reference-free loss function, which we term the Reinforcement Distillation (REDI) objective, outperforms established preference optimization methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate the effectiveness of this approach. Notably, our Qwen-REDI-1.5B model, trained on just 131k traces from the open Open-R1 dataset, achieves an 83.1\% score on MATH-500. Its performance matches that of DeepSeek-R1-Distill-Qwen-1.5B, a model trained on 800k proprietary data. This result showcases the remarkable data efficiency of utilizing previously discarded negative traces.
Submission Number: 258
Loading