Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Robot Learning, Geometric Deep Learning, Robotic Manipulation, Equivariant deep learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: Sample efficient policy learning for manipulation in 3D
Abstract: Many complex robotic manipulation tasks can be decomposed as a sequence of pick and place actions. Training a robotic agent to learn this sequence over many different starting conditions typically requires many iterations or demonstrations, especially in 3D environments. In this work, we propose Fourier Transporter ($\text{FourTran}$), which leverages the two-fold $\mathrm{SE}(d)\times\mathrm{SE}(d)$ symmetry in the pick-place problem to achieve much higher sample efficiency. $\text{FourTran}$ is an open-loop behavior cloning method trained using expert demonstrations to predict pick-place actions on new configurations. $\text{FourTran}$ is constrained by the symmetries of the pick and place actions independently. Our method utilizes a fiber space Fourier transformation that allows for memory-efficient computation. Tests on the RLbench benchmark achieve state-of-the-art results across various tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to robotics, autonomy, planning
Submission Number: 5759