Building Vision Models upon Heat Conduction

16 Sept 2024 (modified: 14 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Vision Models, Representation Learning, Heat Conduction
Abstract: Visual representation models leveraging attention mechanisms are challenged by significant computational overhead, particularly when pursuing large receptive fields. In this study, we aim to mitigate this challenge by introducing the Heat Conduction Operator (HCO) built upon the physical heat conduction principle. HCO conceptualizes image patches as heat sources and models their correlations through adaptive thermal energy diffusion, enabling robust visual representations. HCO enjoys a computational complexity of O(N^1.5), as it can be implemented using discrete cosine transformation (DCT) operations. HCO is plug-and-play, combining with deep learning backbones produces visual representation models (termed vHeat) with global receptive fields. Experiments across vision tasks demonstrate that, beyond the stronger performance, vHeat achieves up to a 3x throughput, 80% less GPU memory allocation and 35% fewer computational FLOPs compared to the Swin-Transformer.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1173
Loading