Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Efficient AI, Parameter-efficient training, Pre-training, Hyperbolic Network
TL;DR: Sparse Spectral Training (SST) is introduced as a memory-efficient training method for pre-training, which updates all singular values and selectively updates singular vectors of weight matrix.
Abstract: The growing demands on GPU memory posed by the increasing number of neural network parameters call for training approaches that are more memory-efficient. Previous memory reduction training techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, face challenges, with LoRA being constrained by its low-rank structure, particularly during intensive tasks like pre-training, and ReLoRA suffering from saddle point issues. In this paper, we propose Sparse Spectral Training (SST) to optimize memory usage for pre-training. SST updates all singular values and selectively updates singular vectors through a multinomial sampling method weighted by the magnitude of the singular values. Furthermore, SST employs singular value decomposition to initialize and periodically reinitialize low-rank parameters, reducing distortion relative to full-rank training compared to other low-rank methods. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, including natural language generation, machine translation, node classification, link prediction, and image classification, SST demonstrates its ability to outperform existing memory reduction training methods and is comparable to full-rank training in various cases. On LLaMA-1.3B, with only 18.7\% of the parameters trainable compared to full-rank training (using a rank equivalent to 6\% of the embedding dimension), SST reduces the perplexity gap between other low-rank methods and full-rank training by 97.4\%. This result highlights SST as an effective parameter-efficient technique for model pre-training, offering a promising new paradigm for achieving scalable and memory-efficient neural network training. Our code is available at https://anonymous.4open.science/r/sparse_spectral_training-6A2C/.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6242
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview