Revisiting Dense Retrieval with Unaswerable CounterfactualsDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Open-domain Question Answering, Text Retrieval
Abstract: The retriever-reader framework is popular for open-domain question answering (ODQA), where a retriever samples for the reader a set of relevant candidate passages from a large corpus. A key assumption behind this method is that high relevance score from the retriever likely indicates high answerability from the reader, which implies a high probability that the retrieved passages contain answers to a given question. In this work, we empirically dispel this belief and observe that recent dense retrieval models based on DPR often rank unanswerable counterfactual passages higher than their answerable original passages. To address such answer-unawareness in dense retrievers, we seek to use counterfactual samples as additional training resources to better synchronize the relevance measurement of DPR with the answerability of question-passage pairs. Specifically, we present counterfactually-Pivoting Contrastive Learning (PiCL), a novel representation learning approach for passage retrieval that leverages counterfactual samples as pivots between positive and negative samples in their learned embedding space. We incorporate PiCL into the retriever training to show the effectiveness of PiCL on ODQA benchmarks and the robustness of the learned models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
14 Replies