Keywords: distribution learning, statistics, algorithms, sample complexity
TL;DR: Product distributions on n dimensions can be learned with sublinear samples if a sufficiently close distribution is provided as advice.
Abstract: Given i.i.d.~samples from an unknown distribution $P$, the goal of distribution learning is to recover the parameters of a distribution that is close to $P$. When $P$ belongs to the class of product distributions on the Boolean hypercube $\{0,1\}^d$, it is known that $\Omega(d/\epsilon^2)$ samples are necessary to learn $P$ within total variation (TV) distance $\epsilon$. We revisit this problem when the learner is also given as advice the parameters of a product distribution $Q$. We show that there is an efficient algorithm to learn $P$ within TV distance $\epsilon$ that has sample complexity $\tilde{O}(d^{1-\eta}/\epsilon^2)$, if $\|\mathbf{p} - \mathbf{q}\|_1<\epsilon d^{0.5 - \Omega(\eta)}$. Here, $\mathbf{p}$ and $\mathbf{q}$ are the mean vectors of $P$ and $Q$ respectively, and no bound on $\|\mathbf{p} - \mathbf{q}\|_1$ is known to the algorithm a priori.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 20727
Loading