Taming Data and Transformers for Audio Generation

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Audio, Diffusion Models, T2A
TL;DR: This work introduces AutoCap, an efficient audio captioning model, and GenAu, a large-scale audio generation model, and AutoReCap-XL, the largest audio-text dataset with 57M clips.
Abstract: Generating ambient sounds is a challenging task due to data scarcity and often insufficient caption quality, making it difficult to employ large-scale generative models for the task. In this work, we tackle this problem by introducing two new models. First, we propose AutoCap, a high-quality and efficient automatic audio captioning model. By using a compact audio representation and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, marking a $3.2\%$ improvement from the best available captioning model at four times faster inference speed. Second, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. Using AutoCap to generate caption clips from existing audio datasets, we demonstrate the benefits of data scaling with synthetic captions as well as model size scaling. When compared to state-of-the-art audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $22.7\%$ in IS, and $13.5\%$ in CLAP score, indicating significantly improved quality of generated audio compared to previous works. Moreover, we propose an efficient and scalable pipeline for collecting audio datasets, enabling us to compile 57M ambient audio clips, forming AutoReCap-XL, the largest available audio-text dataset, at 90 times the scale of existing ones. Our code, model checkpoints, and dataset will be made publicly available upon acceptance.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5752
Loading