VONet: Unsupervised Video Object Learning With Parallel U-Net Attention and Object-wise Sequential VAE

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Unsupervised learning; Video object learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A new state-of-the-art unsupervised video object learning approach incorporating parallel U-Net attention, object-wise sequential VAE, and transformer-based decoding.
Abstract: Unsupervised video object learning seeks to decompose video scenes into structural object representations without any supervision from depth, optical flow, or segmentation. We present VONet, an innovative approach that is inspired by MONet. While utilizing a U-Net architecture, VONet employs an efficient and effective parallel attention inference process, generating attention masks for all slots simultaneously. Additionally, to enhance the temporal consistency of each mask across consecutive video frames, VONet develops an object-wise sequential VAE framework. The integration of these innovative encoder-side techniques, in conjunction with an expressive transformer-based decoder, establishes VONet as the leading unsupervised method for object learning across five MOVI datasets, encompassing videos of diverse complexities. Code is available at https://github.com/hnyu/vonet.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 1582
Loading