Robust Graph Dictionary LearningDownload PDF

Published: 01 Feb 2023, 19:23, Last Modified: 25 Feb 2023, 06:44ICLR 2023 posterReaders: Everyone
Keywords: Graph Learning, Optimal Transport
TL;DR: This paper proposes a robust graph dictionary learning method based on a novel robust variant of GWD.
Abstract: Traditional Dictionary Learning (DL) aims to approximate data vectors as sparse linear combinations of basis elements (atoms) and is widely used in machine learning, computer vision, and signal processing. To extend DL to graphs, Vincent-Cuaz et al. 2021 propose a method, called GDL, which describes the topology of each graph with a pairwise relation matrix (PRM) and compares PRMs via the Gromov-Wasserstein Discrepancy (GWD). However, the lack of robustness often excludes GDL from a variety of real-world applications since GWD is sensitive to the structural noise in graphs. This paper proposes an improved graph dictionary learning algorithm based on a robust Gromov-Wasserstein discrepancy (RGWD) which has theoretically sound properties and an efficient numerical scheme. Based on such a discrepancy, our dictionary learning algorithm can learn atoms from noisy graph data. Experimental results demonstrate that our algorithm achieves good performance on both simulated and real-world datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
14 Replies