Foundation Models for Semantic Novelty in Reinforcement LearningDownload PDF

05 Oct 2022 (modified: 05 May 2023)FMDM@NeurIPS2022Readers: Everyone
Keywords: foundation models, exploration, intrinsic motivation, reinforcement learning
Abstract: Effectively exploring the environment is a key challenge in reinforcement learning (RL). We address this challenge by defining a novel intrinsic reward based on a foundation model, such as contrastive language image pretraining (CLIP), which can encode a wealth of domain-independent semantic visual-language knowledge about the world. Specifically, our intrinsic reward is defined based on pre-trained CLIP embeddings without any fine-tuning or learning on the target RL task. We demonstrate that CLIP-based intrinsic rewards can drive exploration towards semantically meaningful states and outperform state-of-the-art methods in challenging sparse-reward procedurally-generated environments.
0 Replies