OKBench: Democratizing LLM Evaluation with Fully Automated, On-Demand Open Knowledge Benchmarking

ICLR 2026 Conference Submission20246 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM benchmarking, dynamic evaluation, knowledge updates, automated benchmarks, retrieval-augmented methods
Abstract: Knowledge-intensive question answering is central to large language models (LLMs) and is typically assessed using static benchmarks derived from sources like Wikipedia and textbooks. However, these benchmarks fail to capture evolving knowledge in a dynamic world, and centralized curation struggles to keep pace with rapid LLM advancements. To address these drawbacks, we propose OpenKnowledgeBench (OKBench), a fully automated framework for generating high-quality, dynamic knowledge benchmarks on demand. Focusing on the news domain where knowledge updates daily, OKBench is an agentic framework that automates the sourcing, creation, validation, and distribution of benchmarks. Our approach democratizes benchmark creation and facilitates thorough evaluation of retrieval-augmented methods by reducing overlap with pretraining data. We evaluate our framework on multiple open-source and proprietary LLMs of various sizes and configurations, both with and without retrieval over freshly generated knowledge. Our results reveal distinct model behaviors when confronted with new information and highlight how retrieval narrows the performance gap between small and large models. These findings underscore the importance of evaluating LLMs on evolving knowledge benchmarks.
Primary Area: datasets and benchmarks
Submission Number: 20246
Loading