ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis

Published: 16 Jan 2024, Last Modified: 22 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Time Series Analysis, Deep Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: We take a seldom-explored way in time series community to successfully bring convolution back to time series analysis. Our pure convolution structure achieves consistent state-of-the-art in five mainstream time series analysis tasks.
Abstract: Recently, Transformer-based and MLP-based models have emerged rapidly and won dominance in time series analysis. In contrast, convolution is losing steam in time series tasks nowadays for inferior performance. This paper studies the open question of how to better use convolution in time series analysis and makes efforts to bring convolution back to the arena of time series analysis. To this end, we modernize the traditional TCN and conduct time series related modifications to make it more suitable for time series tasks. As the outcome, we propose ModernTCN and successfully solve this open question through a seldom-explored way in time series community. As a pure convolution structure, ModernTCN still achieves the consistent state-of-the-art performance on five mainstream time series analysis tasks while maintaining the efficiency advantage of convolution-based models, therefore providing a better balance of efficiency and performance than state-of-the-art Transformer-based and MLP-based models. Our study further reveals that, compared with previous convolution-based models, our ModernTCN has much larger effective receptive fields (ERFs), therefore can better unleash the potential of convolution in time series analysis. Code is available at this repository:
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 5228