Expected Return Symmetries

Published: 22 Jan 2025, Last Modified: 30 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multi-agent reinforcement learning, zero-shot coordination
TL;DR: Discovering a symmetry class over policies that improves coordination between agents
Abstract: Symmetry is an important inductive bias that can improve model robustness and generalization across many deep learning domains. In multi-agent settings, a priori known symmetries have been shown to address a fundamental coordination failure mode known as mutually incompatible symmetry breaking; e.g. in a game where two independent agents can choose to move "left" or "right", and where a reward of +1 or -1 is received when the agents choose the same action or different actions, respectively. However, the efficient and automatic discovery of environment symmetries, in particular for decentralized partially observable Markov decision processes, remains an open problem. Furthermore, environmental symmetry breaking constitutes only one type of coordination failure, which motivates the search for a more accessible and broader symmetry class. In this paper, we introduce such a broader group of previously unexplored symmetries, which we call expected return symmetries, which contains environment symmetries as a subgroup. We show that agents trained to be compatible under the group of expected return symmetries achieve better zero-shot coordination results than those using environment symmetries. As an additional benefit, our method makes minimal a priori assumptions about the structure of their environment and does not require access to ground truth symmetries.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13880
Loading