Keywords: multimodal large language model, large language model, speech language model
TL;DR: We present a true speech-to-speech LLM that understands and generates speech directly, without text intermediates, achieving state-of-the-art spoken QA.
Abstract: Spoken dialogue systems often rely on cascaded pipelines that transcribe, process, and resynthesize speech. While effective, this design discards paralinguistic cues and limits expressivity. Recent end-to-end methods reduce latency and better preserve these cues, yet still rely on text intermediates, creating a fundamental bottleneck. We present a true speech-to-speech large language model that directly understands and generates speech without relying on text guidance. Our approach combines a modality-based layer-splitting architecture with a frozen pre-training strategy, preserving the reasoning and knowledge of pretrained text LLMs while adding native speech capabilities. Experiments show that our model achieves state-of-the-art results in spoken question answering and delivers comparable speech-to-speech performance relative to existing text-guided systems, while still maintaining competitive text performance. By narrowing the gap between text-guided and direct speech generation, our work establishes a new paradigm for expressive and efficient end-to-end speech interaction. We will release our code and models to support further research in true speech-to-speech foundation models.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 11530
Loading