Keywords: Multi-agent RL, Diffusion Models, Offline RL
TL;DR: We propose a multi-agent diffusion framework that unifies decentralized policy, centralized controller, teammate modeling, and trajectory prediction.
Abstract: Offline reinforcement learning (RL) aims to learn policies from pre-existing datasets without further interactions, making it a challenging task. Q-learning algorithms struggle with extrapolation errors in offline settings, while supervised learning methods are constrained by model expressiveness. Recently, diffusion models (DMs) have shown promise in overcoming these limitations in single-agent learning, but their application in multi-agent scenarios remains unclear. Generating trajectories for each agent with independent DMs may impede coordination, while concatenating all agents’ information can lead to low sample efficiency. Accordingly, we propose MADiff, which is realized with an attention-based diffusion model to model the complex coordination among behaviors of multiple agents. To our knowledge, MADiff is the first diffusion-based multi-agent learning framework, functioning as both a decentralized policy and a centralized controller. During decentralized executions, MADiff simultaneously performs teammate modeling, and the centralized controller can also be applied in multi-agent trajectory predictions. Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks, highlighting its effectiveness in modeling complex multi-agent interactions.
Supplementary Material: zip
Primary Area: Reinforcement learning
Submission Number: 4655
Loading