Keywords: Long-horizon planning, Benchmark, Multimodality, robotics, VQA, data collection, VLM
TL;DR: An approach for efficient collection of robotics data, a large and diverse dataset for robotics visual question answering and a single model with embodied reasoning evaluated on multiple new benchmarks with intervention rate.
Abstract: We present a scalable, bottom-up and intrinsically diverse data collection scheme that can be used for high-level reasoning with long and medium horizons and that has 2.2x higher throughput compared to traditional narrow top-down step-by-step collection. We collect realistic data by performing any user requests within the entirety of 3 office buildings and using multiple embodiments (robot, human, human with grasping tool). With this data, we show that models trained on all embodiments perform better than ones trained on the robot data only, even when evaluated solely on robot episodes. We explore the economics of collection costs and find that for a fixed budget it is beneficial to take advantage of the cheaper human collection along with robot collection. We release a large and highly diverse (29,520 unique instructions) dataset dubbed RoboVQA containing 829,502 (video, text) pairs for robotics-focused visual question answering. We also demonstrate how evaluating real robot experiments with an intervention mechanism enables performing tasks to completion, making it deployable with human oversight even if imperfect while also providing a single performance metric.
We demonstrate a single video-conditioned model named RoboVQA-VideoCoCa trained on our dataset that is capable of performing a variety of grounded high-level reasoning tasks in broad realistic settings with a cognitive intervention rate 46\% lower than the zero-shot state of the art visual language model (VLM) baseline and is able to guide real robots through long-horizon tasks. The performance gap with zero-shot state-of-the-art models indicates that a lot of grounded data remains to be collected for real-world deployment, emphasizing the critical need for scalable data collection approaches. Finally, we show that video VLMs significantly outperform single-image VLMs with an average error rate reduction of 19\% across all VQA tasks. Thanks to video conditioning and dataset diversity, the model can be used as general video value functions (e.g. success and affordance) in situations where actions needs to be recognized rather than states, expanding capabilities and environment understanding for robots.
Data and videos are available at https://anonymous-robovqa.github.io/
Submission Number: 24
Loading