ROCO: A General Framework for Evaluating Robustness of Combinatorial Optimization Solvers on GraphsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Combinatorial Optimization, Robustness, Graph Neural Networks, Reinforcement Learning
Abstract: Solving combinatorial optimization (CO) on graphs has been attracting increasing interests from the machine learning community whereby data-driven approaches were recently devised to go beyond traditional manually-designated algorithms. In this paper, we study the robustness of a combinatorial solver as a blackbox regardless it is classic or learning-based though the latter can often be more interesting to the ML community. Specifically, we develop a practically feasible robustness metric for general CO solvers. A no-worse optimal cost guarantee is developed as such the optimal solutions are not required to achieve for solvers, and we tackle the non-differentiable challenge in input instance disturbance by resorting to black-box adversarial attack methods. Extensive experiments are conducted on 14 unique combinations of solvers and CO problems, and we demonstrate that the performance of state-of-the-art solvers like Gurobi can degenerate by over 20% under the given time limit bound on the hard instances discovered by our robustness metric, raising concerns about the robustness of combinatorial optimization solvers.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
23 Replies

Loading