ET-SEED: EFFICIENT TRAJECTORY-LEVEL SE(3) EQUIVARIANT DIFFUSION POLICY

Published: 10 Nov 2024, Last Modified: 10 Nov 2024CoRL-X-Embodiment-WS 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Imitation Learning, Equivariance, Data Efficiency
TL;DR: We introduces ET-SEED, an SE(3) equivariant diffusion model that leverages spatial symmetries to improve data efficiency and spatial generalization in robotic manipulation tasks while reducing training complexity.
Abstract: Imitation learning, e.g., diffusion policy, has been proven effective in various robotic manipulation tasks. However, extensive demonstrations are required for policy robustness and generalization. To reduce the demonstration reliance, we leverage spatial symmetry and propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion model for generating action sequences in complex robot manipulation tasks. Further, previous equivariant diffusion models require the per-step equivariance in the Markov process, making it difficult to learn policy under such strong constraints. We theoretically extend equivariant Markov kernels and simplify the condition of equivariant diffusion process, thereby significantly improving training efficiency for trajectory-level SE(3) equivariant diffusion policy in an end-to-end manner. We evaluate ET-SEED on representative robotic manipulation tasks, involving rigid body, articulated and deformable object. Experiments demonstrate superior data efficiency and manipulation proficiency of our proposed method, as well as its ability to generalize to unseen configurations with only a few demonstrations. Website: https://et-seed.github.io/
Previous Publication: No
Submission Number: 14
Loading